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It is often impractical to instrument the external surface of high-speed vehicles due to the 

aerothermodynamic heating. Temperatures can instead be measured internal to the structure 

using embedded thermocouples, and direct and inverse methods can then be used to estimate 

temperature and heat flux on the external surface. Two thermocouples embedded at different 

depths are required to solve direct and inverse problems, and filtering schemes are used to 

reduce noise in the measured data. Accuracy in the estimated surface temperature and heat 

flux is dependent on several factors. Factors include the thermocouple location through the 

thickness of a material, the sensitivity of the surface solution to the error in the specified 

location of the embedded thermocouples, and the sensitivity to the error in thermocouple data. 

The effect of these factors on solution accuracy is studied using the methodology discussed in 

the work of Pizzo, et. al.1 A numerical study is performed to determine if there is an optimal 

depth at which to embed one thermocouple through the thickness of a material assuming that 

a second thermocouple is installed on the back face. Solution accuracy will be discussed for a 

range of embedded thermocouple depths. Moreover, the sensitivity of the surface solution to 

(a) the error in the specified location of the embedded thermocouple and to (b) the error in 

the thermocouple data are quantified using numerical simulation, and the results are 

discussed. 

Nomenclature 
1-D = One-dimensional  

𝑐𝑝 = Specific heat capacity, J/(kg-K)  

DHCP, IHCP =  Direct (respectively, inverse) heat conduction problem 

𝑒𝑞(𝑡), 𝑒𝑇(𝑡) = Error in heat flux (respectively, temperature), % 

𝑘 = Thermal conductivity, W/(m-K) or W/(cm-K) 

L = Thickness of material specimen 

𝑚 = Superscript denoting the time step count 

𝑛 = Subscript denoting the nodal count 

𝑁𝐷 , 𝑁𝐼 = Number of nodes for the DHCP (respectively, IHCP) 

𝑞 = Heat flux, W/m2 or W/cm2 

𝑇 = Temperature, K 

t = Time, s  
𝑥𝑛 = Spatial location, m or cm 

𝛼 = Thermal diffusivity = 𝑘/𝜌𝑐𝑃 , m2/s 

Δ𝑡 = Time step size, s 

Δ𝑥 = Cell size, m or cm 

∈ = Symbol denoting the phrase is an element of 

𝜌 = Mass density, kg/m3 or kg/cm3 
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I. Introduction 
hile traveling at hypersonic speeds, flight vehicles encounter high heating resulting in high surface temperature. 

There is an interest in knowing these surface values particularly in the fields of materials, structures, and 

aerothermodynamics research. Unfortunately, it is usually either impractical or impossible to instrument the external 

surface of high-speed vehicles due to the aerothermodynamic heating. Temperature histories are instead measured 

internally to the surface by embedding thermocouples or thermocouple plugs through the thickness of the vehicle skin 

or thermal protection system. The measurements can then be used to solve an inverse heat conduction problem (IHCP) 

to estimate surface temperature and heat flux. The inverse problem is ill-posed. Therefore, the solution is extremely 

sensitive to measurement errors, i.e., small errors in the data yield large errors in the solution2-6. 

The study of inverse heat conduction started in the late 1950s with work published by Shumakov7 and Stolz8 in 

1957 and 1960, respectively. In the years since, numerous methods for solving both linear (constant thermophysical 

properties) and nonlinear (temperature-dependent thermophysical properties) one-dimensional (1-D) transient inverse 

problems have emerged from researchers in the field such as Beck3,9,10,11, Murio6, Weber2, and Carasso5, among others. 

In 2016, Pizzo, et. al.,1 estimated surface temperature and heat flux histories of high-temperature carbon/carbon 

materials using a 1-D inverse method (defined within the body of paper) with temperature-dependent thermophysical 

properties (nonlinear problem) assuming negligible in-plane temperature gradients. The study was motivated by 

Frankel, et. al.,4,12,13. In his work, Frankel solved the 1-D transient heat conduction problem using noisy data measured 

at internal depths 𝑥1 and 𝑥2 where 𝑥1 < 𝑥2. He reduced noise in the data with a global low-pass Gaussian filter by 

defining a cutoff frequency using discrete Fourier transforms of the data. Frankel then approximated the 

heating/cooling rate using finite differences and numerically integrated the integral relationship between temperature 

and heat flux to obtain an analytical heat flux solution at depth 𝑥2. The surface temperature and heat flux were 

approximated from the measured temperature and calculated heat flux at depth 𝑥2 using finite differences and Taylor 

series reconstruction. This method yielded accurate results.  

The methodology in Pizzo, et. al1 used Frankel’s procedures as a guide, but made two slight modifications. First, 

local windowed-sinc filters were used to reduce noise in the measured data. Second, a technique developed by Carasso5 

was used to solve the inverse problem. In this technique, the 1-D heat conduction equation is first written as a first-

order system with temperature and heat flux as the unknowns, and is then discretized using forward differencing in 

space and central differencing in time. The methodology in [1] was validated using data provided by thermal vacuum 

chamber radiant heating tests (c.f. Blosser14). Pizzo demonstrated accuracy in estimating temperature histories using 

comparisons with test results (estimated solutions had error in the range of -5% to 9%). The estimated heat flux 

histories however had significantly larger error than temperature (estimated solutions had error in the range of -30% 

to 10%). The larger errors were expected, because for the methodology used, the rate of convergence with heat flux 

with mesh size is one order less accurate than temperature.  

The purpose of this paper is to expand upon the work in [1] by characterizing the selected method for inverse heat 

conduction. For inverse methods, because small errors in the data yield large errors in the solution, accuracy in the 

estimated surface temperature and heat flux is dependent on several factors. Factors include the embedded 

thermocouple depth through the thickness of a material, the sensitivity of the surface solution to the error in the 

specified location of the embedded thermocouple, and the sensitivity of the solution to the error in thermocouple data. 

The effect of these factors on solution accuracy is presented in this paper.  

The inverse methodology is summarized in Section II, and the characterization of the method is discussed in 

Section III. Concluding remarks are discussed in Section IV. 

II. Methodology Summary  

The transient temperature distribution in a material is governed by the heat conduction equation. Assuming that 

the in-plane temperature gradients are negligible, the heat conduction equation reduces to its 1-D form:  

 

 

(1)  

 

 

where 𝜌, 𝑐𝑝, and 𝑘 are the density, specific heat, and thermal conductivity of the material, respectively. The initial 

temperature distribution through the thickness of the material is specified at time 𝑡 = 0: 

 

 

(2)  
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Boundary conditions at the outer surfaces (𝑥 = 0, 𝐿) are required to solve Eq. (1). For the classical initial-boundary 

value problem, referred to in this work as the direct heat conduction problem (DHCP), the boundary conditions are in 

the form of specified temperature or heat flux3. In situations where the boundary values are unknown, an inverse3,4,12 

problem must be solved using known internal 

temperatures at two depths, denoted by 𝑥1 and 𝑥2. The 

source of the internal temperatures is typically data 

from a set of embedded thermocouples as illustrated 

in Figure 1. 

In [1], the surface temperature and heat flux 

histories at 𝑥 = 𝐿 are estimated from two internal 

temperature measurements, 𝑇1 and 𝑇2, using a four-

step process. The four-step process includes filtering 

noise from the measured data, solving for temperature 

histories in the region between depths 𝑥1 and 𝑥2 

where 0 ≤ 𝑥1 < 𝑥2 < 𝐿, solving for the heat flux 

history at depth, 𝑥2, and solving for the temperature 

and heat flux histories in the region extending from 

depth 𝑥 = 𝑥2 to 𝑥 = 𝐿.  

Solving for Temperature Histories Between Depths 𝒙𝟏 and 𝒙𝟐 (Direct Problem) 

The region between thermocouples embedded at depths 𝑥1 and 𝑥2 is treated as the DHCP with initial and boundary 

values given by measured data, i.e. 

 

 

  

(3)  

 

 

 

Equation (1) is discretized by dividing the domain into a uniform mesh of 𝑁𝐷 total nodes with cell size of Δ𝑥 =
(𝑥2 − 𝑥1)/(𝑁𝐷 − 1). In the mesh, node 𝑛 = 1 is at depth 𝑥 = 𝑥1 and node 𝑛 = 𝑁𝐷 is at depth 𝑥 = 𝑥2. Letting 𝑇𝑛

𝑚 

denote the temperature of node 𝑛 at time 𝑡𝑚 = 𝑚Δ𝑡, the temperature of node 𝑛 at time 𝑡𝑚+1 = (𝑚 + 1)Δ𝑡 is obtained 

using a vertex-based finite volume method with Crank-Nicholson time marching:  

 

 

(4)  

 

 

where 𝛼𝑛−1,𝑛
𝑚  (𝛼𝑛,𝑛+1

𝑚 ) denotes the average of the temperature-dependent thermal diffusivity evaluated at temperatures 

𝑇𝑛−1
𝑚  and 𝑇𝑛

𝑚 (𝑇𝑛
𝑚 and 𝑇𝑛+1

𝑚 ). Since 𝑇1
𝑚+1 = 𝑇(𝑥1, (𝑚 + 1)Δ𝑡) and 𝑇𝑁𝐷

𝑚+1 = 𝑇(𝑥2, (𝑚 + 1)Δ𝑡) are known from the 

filtered data, Eq. (4) yields temperature histories at nodes 𝑛 ∈ [2, 𝑁𝐷 − 1], or equivalently, in the domain 𝑥 ∈ [𝑥1, 𝑥2]. 

Solving for the Heat Flux History at Depth 𝒙𝟐 (Direct Problem) 

Let 𝑞𝑁𝐷
𝑚  denote the heat flux entering the domain at node 𝑁𝐷 at time 𝑡𝑚 = 𝑚Δ𝑡. The heat flux entering the domain 

at node 𝑁𝐷 at time 𝑡𝑚+1 = (𝑚 + 1)Δ𝑡 is treated as an unknown and is obtained using a consistent approach based 

upon an energy balance for the half-call 𝑥 ∈ [𝑥𝑁𝐷
− Δ𝑥/2, 𝑥𝑁𝐷

] combined with Crank-Nicholson time marching: 

 

 

(5) 

 

where 𝑘𝑁𝐷
𝑚  and 𝑐𝑝𝑁𝐷

𝑚  denote the temperature-dependent thermal conductivity and specific heat, respectively, evaluated 

at temperature 𝑇𝑁𝐷
𝑚 . The density is denoted by 𝜌 and is constant. Solving Eq. (5) yields the heat flux history at node 

𝑛 = 𝑁𝐷, or equivalently, at depth 𝑥 = 𝑥2. 

 
Figure 1. Illustration of the direct and inverse problems 

and the embedded thermocouples, T1 and T2. 
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Solving for Temperature Heat Flux Histories Between Depths 𝒙𝟐 and 𝒙 = 𝑳 (Inverse Problem) 

The region extending from thermocouple depth 𝑥 = 𝑥2 to the external surface 𝑥 = 𝐿 is treated as the IHCP. The 

temperature and heat flux distributions are calculated in the domain 𝑥 ∈ [𝑥2, 𝐿] using a mesh of 𝑁𝐼 nodes where node 

𝑛 = 1 is at depth 𝑥 = 𝑥2 and node 𝑛 = 𝑁𝐼 is at 𝑥 = 𝐿. The method used to solve the inverse problem is the space 

marching scheme S6 as outlined by Carasso5. The scheme has a truncation error of 𝑂(𝛥𝑡2) and 𝑂(𝛥𝑥), and the scheme 

was found by Carasso to have the smallest amplification factor. Therefore, the S6 scheme was the most stable of the 

𝑂(𝛥𝑡2) schemes analyzed. The S6 scheme is derived by writing the 1-D heat conduction equation as a first-order 

system for the heat flux: 

 

(6) 

 

The temperature and heat flux at node 1 are known since 𝑥2 is a shared boundary between the domain of the direct 

and inverse problems. Equation (6) is discretized using forward differencing in space and central differencing in time. 

For each node, 𝑛 = 1, … , 𝑁𝐼 − 1:  

 

(7)  

 

(8)  

 

(9)  

 

Equations (7) to (9) yield temperature and heat flux distributions in the domain 𝑥 ∈ [𝑥2, 𝐿] marching from node 1 

to node 𝑁𝐼 using boundary values given by the DHCP solution at depth 𝑥2, i.e. 

 

(10)  

 

where 𝑇DHCP  𝑥2
 denotes the filtered temperature at depth 𝑥2 and 𝑞DHCP  𝑥2

 denotes the heat flux solution at depth 𝑥2 

calculated from Eq. (5). Starting with node 1, the solution is marched in time before preceding to the next node.  

III. Methodology Characterization  

The methodology in Pizzo, et. al,1 is characterized by studying (a) the effects of embedded thermocouple depth 

through the thickness of a material on the accuracy of the estimated surface temperature and heat flux, (b) the 

sensitivity of the surface solution to the error in the specified location of the embedded thermocouples, and (c) the 

sensitivity to the error in the thermocouple data. For the characterization, it is assumed that one thermocouple is 

installed on the back face of a material and a second thermocouple is embedded through the thickness. The motivation 

for this work is to study the factors that affect solution accuracy and identify best practices when solving inverse 

problems using the methodology presented. 

Model Problem 

Each numerical study is performed using a model problem for which an analytical solution exists. The model 

assumes that one thermocouple is embedded through the thickness of a material and a second thermocouple is installed 

on the back face. Numerical solutions are compared to the exact analytical solution to assess accuracy of the method.  

Assuming constant thermophysical properties, the heat conduction equation (1) reduces to:  

 

 

(11)  

 

 

where 𝛼 = 𝑘/𝜌𝑐𝑃. In each study, Eq. (11) is solved analytically in 0 ≤ 𝑥 ≤ 𝐿 for 𝑡 ∈ [0 100] s, with initial and 

boundary conditions:  

 

 

(12)  
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and thermophysical properties:  

 

(13)  

 

Boundary conditions of 𝑞0 = 0 W/cm2, 𝑞𝐿 = 40 W/cm2 (herein identified as the Constant Case) and 𝑞0 = 0 W/cm2, 

𝑞𝐿 = (40 −  /10) W/cm2 (herein identified as the Linear Case) are considered in Eq. (12). The imposed heat flux 

boundary conditions at depth 𝑥𝐿 are graphed versus time in Figure 2 for both the (a) Constant Case and (b) Linear 

Case, where 𝑡 ∈ [0 100] s. The corresponding analytical temperature solutions at depth 𝑥𝐿, denoted by 𝑇𝐿 , are graphed 

versus time in Figure 3 for both the (a) Constant Case and (b) Linear Case. 

For each of the numerical studies presented in this paper, solution convergence was achieved by refining the spatial 

domain of the direct problem. With each successive refinement, the cell size was divided in half and the unbiased 

variance was calculated between consecutive refinements using the temperature of the node at the midpoint in the 

spatial domain. Once the variance fell below 0.01 K, the solution was considered converged using the refinement of 

the smaller cell size. Moreover, time-steps of Δ𝑡 = 0.1 s and Δ𝑡 = 0.01 s were considered in each study. 

The estimated and exact temperature at 𝑥 = 𝐿 are used to compute the error in temperature:  

 

 

(14)  

 

 

where the exact temperature 𝑇𝐿  is obtained analytically. The graphical representations of the analytical temperatures 

are shown in Figure 3. The estimated and imposed heat flux at 𝑥 = 𝐿 are used to compute the error in heat flux: 

 

 

(15)  

 

 

where the imposed heat flux is given by 𝑞𝐿 = 40 W/cm2 in the Constant Case and 𝑞𝐿 = (40 −  /10) W/cm2 in the 

Linear Case. The graphical representations of the imposed heat flux are shown in  Figure 2. The absolute values were 

removed from the standard error calculation in Eqs. (14) and (15) to examine when the numerical solution either 

overestimated (𝑒 > 0) or underestimated (𝑒 < 0) the solution.  

Effects of Embedded Thermocouple Depth Through the Thickness of a Material 

A numerical study was conducted to determine if there is an optimal depth to embed one thermocouple through 

the thickness of a material. Fifteen different depths were considered for the location of the embedded thermocouple, 

namely depths 𝑥1, 𝑥2, … 𝑥14, 𝑥15 as illustrated in Figure 4. Using the analytical temperature solutions of Eqs. (11) to 

(13) at depth 𝑥0 paired with the solutions at depths 𝑥1, 𝑥2, … 𝑥14, 𝑥15 as inputs to the DHCP, heat flux histories are 

estimated at depths 𝑥1, 𝑥2, … 𝑥14, 𝑥15. The boundary values in Eq. (10) are then given by the analytical temperature 

and estimated heat flux at each depth, and are used to solve the IHCP to estimate the surface temperature and heat flux 

histories, 𝑇𝐿  and 𝑞𝐿, respectively.  

𝑘 = 0.0575 W/(m-K), 𝜌 = 0.0015 kg/cm3, 𝑐𝑃 = 1833.33 J/(kg-K) . 

𝑒𝑇(𝑡) = 100 (
es  ma ed 𝑇(𝐿, 𝑡) − 𝑇𝐿

𝑇𝐿

) 

𝑒𝑞(𝑡) = 100 (
es  ma ed 𝑞(𝐿, 𝑡) − 𝑞𝐿

𝑞𝐿

) 

 
 

(a) Constant Case (b) Linear Case 

 

Figure 2. Illustration of the imposed heat flux 𝒒𝑳 

graphed versus time.  

Figure 2.  

Figure 3. 

 
 

(a) Constant Case (b) Linear Case 

 

Figure 3. Illustration of the analytical temperature 

𝑻𝑳 graphed versus time. 
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In both the Constant and Linear Case studies with time-step of Δ𝑡 = 0.01 s, the ill-posedness of the inverse 

problem resulted in growing oscillations as the solution marched from each simulated thermocouple depth to 𝑥𝐿. The 

oscillatory growth was greatest for depths 𝑥1 to 𝑥6, yielding meaningless results with embedded thermocouples nearest 

the back face.  The oscillations are a direct result of the domain size in the inverse problem combined with a small 

time-step. With small time-steps, larger domain sizes for the inverse problem allow for greater oscillatory growth. On 

the other hand, in both the Constant and Linear Case studies with time-step of Δ𝑡 = 0.1 s, the effect of the ill-

posedness of the inverse problem was negligible for all embedded thermocouple depths 𝑥1 to 𝑥15. Temperature and 

heat flux estimations are therefore only given for the Constant and Linear Case studies with time-step of Δ𝑡 = 0.1 s. 

Moreover, only the estimations from depths 𝑥7 to 𝑥15 are considered for assessment due to the growing oscillations 

observed for depths 𝑥1 to 𝑥6 with the smaller time-step of Δ𝑡 = 0.01 s. 

The Constant Case temperature and heat flux estimates are shown in Figure 5(a) and Figure 5(b) for Δ𝑡 = 0.1 s. 

Neglecting depths 𝑥1 to 𝑥6, the smallest magnitude of error in temperature is obtained for depths 𝑥8, 𝑥11, 𝑥12, 𝑥7, and 

𝑥10 with error ranging from 0% to 4% between 𝑡 ∈ [0 10] s, and from 0% to 2% by 𝑡 = 100 s. The largest magnitude 

of error in temperature is obtained for depths 𝑥13, 𝑥15, 𝑥9, and 𝑥14 with error greater than 5% between 𝑡 ∈ [0 10] s, 

and from 2% to 3% by 𝑡 = 100 s. The smallest magnitude of error in heat flux is obtained for depths 𝑥12, 𝑥11, 𝑥10, 𝑥7, 

𝑥13, and 𝑥15 with error ranging from −1% to 1% for 𝑡 ∈ [0 100] s. The largest magnitude of error in heat flux is 

obtained for depths 𝑥9, 𝑥8, and 𝑥14 with error greater than ±2% for 𝑡 ∈ [0 100] s. 

The Linear Case temperature and heat flux estimates are shown in Figure 6(a) and Figure 6(b) for Δ𝑡 = 0.1 s. 

Neglecting depths 𝑥1 to 𝑥6, the smallest magnitude of error in both temperature and heat flux is obtained for depths 

𝑥15, 𝑥14, 𝑥13, 𝑥12, 𝑥11, and 𝑥10 with error decreasing below −0.2% by 𝑡 = 100 s for temperature, and decreasing 

below 0.05% by 𝑡 = 100 s for heat flux.  

In the Linear Case, depths 𝑥13 to 𝑥15 yield the smallest magnitude of error in both temperature and heat flux, 

followed closely by depths 𝑥10 to 𝑥12. However, in the Constant Case, depths 𝑥13 to 𝑥15 yield the largest magnitude 

of error in both temperature and heat flux, whereas depths 𝑥10 to 𝑥12 yield the smallest. Considering all of the 

numerical results, the studies demonstrate that when using the methodology presented in [1] the surface estimations 

for both temperature and heat flux are consistently the most accurate if one thermocouple is embedded between depths 

𝑥10 and 𝑥12 (5𝐿/8 and 3𝐿/4) when the second thermocouple is installed on the back face. This finding is based entirely 

off of the model problem previously discussed, and is independent of time-step. Further assessments should be 

conducted to conclusively make this assertion, as alluded to in the concluding remarks in Section IV. 

 
Figure 4. Illustration of the fifteen different depths considered for the embedded thermocouple. 
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(a) Temperature error at 𝒙 = 𝑳  

 

 
(b) Heat flux error at 𝒙 = 𝑳 

 

Figure 5. Error in the Constant Case estimations using a time step of 𝚫𝒕 = 0.1 s. 
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(a) Temperature error at 𝒙 = 𝑳  

 

 
(b) Heat flux error at 𝒙 = 𝑳 

 

Figure 6. Error in the Linear Case estimations, comparing the numerical results to the analytical solution with 

considering time-step of 𝚫𝒕 = 0.1 s. 
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Sensitivity of Surface Solution to Error in Specified Location of the Embedded Thermocouple 

A numerical study was conducted to assess the sensitivity of the surface solution to the error in the specified 

location of the embedded thermocouple. For the sensitivity study, the embedded thermocouple is assumed to be at 

depth 3𝐿/4. The depth of 3𝐿/4 was selected because the previous results demonstrate that the estimations for both 

temperature and heat flux are consistently the most accurate when the embedded thermocouple is between depths 

5𝐿/8 and 3𝐿/4. 

To simulate error in the specified location of the thermocouple, the stated methodology is solved with accurate 

temperature data located at inaccurate depths. The embedded depth is perturbed by a factor of 𝛿. For 𝛿 = 0.01, 0.02, 

0.03, 0.04, 0.05, 0.10, and 0.15, the DHCP is solved with analytical solutions of 𝑇(𝑥1, 𝑡) and 𝑇(𝑥2 ± 𝛿𝐿, 𝑡) and depth 

inputs of 𝑥1 = 0 and 𝑥2 = 3 /4. The solution yields 𝑞DHCP  𝑥2
 defined by Eq. (10). Boundary values 𝑇(𝑥2 ± 𝛿𝐿, 𝑡) and 

𝑞DHCP  𝑥2
 are then used to solve the IHCP to estimate the surface histories, 𝑇𝐿  and 𝑞𝐿.  

Surface estimations are compared against the error in temperature and heat flux, 𝑒𝑇 and 𝑒𝑞 respectively, obtained 

from the embedded thermocouple depth study. The known 𝑒𝑇 and 𝑒𝑞 from depth 𝑥12, shown in Figure 5 and Figure 

6, are used as a baseline in which case the perturbation, 𝛿, is equal to 0.00. Since the model problem is a linear problem, 

the difference in error in the estimated temperature and heat flux is expected to be proportional to the prescribed error 

in the simulated baseline data. 

The Constant Case temperature and heat flux estimates are shown in Figure 7(a) and Figure 7(b) for Δ𝑡 = 0.1 s. 

Additionally, the Linear Case temperature and heat flux estimates are shown in Figure 8(a) and Figure 8(b) for Δ𝑡 =
0.1 s. Results demonstrate that for both the Constant and Linear Case, as 𝛿 increases (decreases) towards +0.15 

(−0.15), the error in surface temperature and heat flux increases (decreases). Hence, the difference in error in the 

estimated temperature and heat flux is proportional to the prescribed baseline error, which was to be expected. The 

results also demonstrate that the heat flux error bounds remain constant with time whereas the temperature error 

bounds decrease with time. Moreover, while the error in temperature stays well within the bounds of the perturbation 

(±15%), the error in heat flux follows closely to the bounds of the perturbation.  

Sensitivity of Surface Solution to Error in Thermocouple Data 

A numerical study was also conducted to assess the sensitivity of the surface solution to the error in thermocouple 

data. For the sensitivity study, the embedded thermocouple is assumed to be at depth 3𝐿/4. 

To simulate error in thermocouple data, the stated methodology is solved with inaccurate temperature data located 

at accurate depths. The temperature data are perturbed by a factor of 𝛿. For 𝛿 = 0.01, 0.02, 0.03, 0.04, 0.05, 0.10, and 

0.15, the DHCP is solved with analytical solutions of 𝑇(𝑥1, 𝑡) and 𝑇(𝑥2, 𝑡) ± 𝛿𝑇(𝑥2, 𝑡) and depth inputs of 𝑥1 = 0 

and 𝑥2 = 3 /4. The solution yields 𝑞DHCP  𝑥2
 defined by Eq. (10). Boundary values 𝑇(𝑥2, 𝑡) ± 𝛿𝑇(𝑥2, 𝑡) and 𝑞DHCP  𝑥2

 

are then used to solve the IHCP to estimate the surface histories, 𝑇𝐿  and 𝑞𝐿.  

Surface estimations are compared against the error in temperature and heat flux, 𝑒𝑇 and 𝑒𝑞, respectively, obtained 

from the embedded thermocouple depth study. The known 𝑒𝑇 and 𝑒𝑞 from depth 𝑥12, shown in Figure 5 and Figure 

6, are used as a baseline in which case the perturbation, 𝛿, is equal to 0.00. Since the model problem is a linear problem, 

the difference in error in the estimated temperature and heat flux is expected to be proportional to the prescribed error 

in the simulated baseline data.  

The Constant Case temperature and heat flux estimates are shown in Figure 9(a) and Figure 9(b) for Δ𝑡 = 0.1 s. 

Additionally, the Linear Case temperature and heat flux estimates are shown in Figure 10(a) and Figure 10(b) for 

Δ𝑡 = 0.1 s. Results demonstrate that for both the Constant and Linear Case, as 𝛿 increases (decreases) towards +0.15 

(−0.15), the error in surface temperature and heat flux increase (decrease). Hence, the difference in error in the 

estimated temperature and heat flux is proportional to the prescribed baseline error, which was to be expected. The 

results also demonstrate that the temperature error bounds remain constant with time, whereas the heat flux error 

increases with time. Moreover, while the error in temperature follows closely to the bounds of the perturbation 

(±15%), the error in heat flux is well outside the bounds of the perturbation. 
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(a) Temperature error at 𝒙 = 𝑳 

 

 
(b) Heat flux error at 𝒙 = 𝑳 

 

Figure 7. Sensitivity of the surface estimations to the error in the specified location of the embedded 

thermocouple for the Constant Case using a time-step of 𝚫𝒕 = 0.1 s.  
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(a) Temperature error at 𝒙 = 𝑳 

 

 
(b) Heat flux error at 𝒙 = 𝑳 

 

Figure 8. Sensitivity of the surface estimations to the error in the specified location of the embedded 

thermocouple for the Linear Case using a time-step of 𝚫𝒕 = 0.1 s. 
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(a) Temperature error at 𝒙 = 𝑳 

 

 
(b) Heat flux error at 𝒙 = 𝑳 

 

Figure 9. Sensitivity of the surface estimations to the error in thermocouple data for the Constant Case using a 

time-step of 𝚫𝒕 = 0.1 s. 
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(a) Temperature error at 𝒙 = 𝑳 

 

 
(b) Heat flux error at 𝒙 = 𝑳 

 

Figure 10. Sensitivity of the surface estimations to the error in thermocouple data for the Linear Case using a 

time-step of 𝚫𝒕 = 0.1 s. 
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IV. Concluding Remarks 
The purpose of this paper is to expand upon the 2016 work of Pizzo, et. al,1 by characterizing the selected method 

for inverse heat conduction. Due to the ill-posedness of inverse problems, small errors in the data yield large errors in 

the solution. When solving inverse problems, accuracy in the estimated surface temperature and heat flux is dependent 

on several factors. Factors include the embedded thermocouple depth through the thickness of a material, the 

sensitivity of the surface solution to the error in the specified location of the embedded thermocouples, and the 

sensitivity to the error in thermocouple data. The effect of these factors on solution accuracy is presented in this paper. 

Each numerical study is performed using a model problem. The model assumes that one thermocouple is embedded 

through the thickness of a material and a second thermocouple is installed on the back face. Numerical data are 

compared against an exact analytical solution.  

Preliminary results of the study to determine if there is an optimal depth to embed one thermocouple through the 

thickness of a material demonstrate that the surface estimations for both temperature and heat flux are consistently the 

most accurate if one thermocouple is embedded between depths 𝑥10 and 𝑥12 (5𝐿/8 and 3𝐿/4) when a second 

thermocouple is installed on the back face. This finding is based entirely off of the model problem, and is independent 

of time-step. Further assessments should be conducted to conclusively make this assertion, by perhaps considering a 

radiative boundary condition for 𝑞𝐿 with temperature-dependent thermophysical properties. This type of study would 

better emulate the testing conditions of carbon/carbon materials. Test data can then be used to validate the numerical 

findings. To assess whether the optimal depth is dependent on either the physical or numerical aspects of the problem, 

other spatial divisions should also be considered, e.g. by dividing the domain from 𝑥 = 0 to 𝑥 = 𝐿 into perhaps 20 or 

100 evenly spaced intervals.  

When assessing the sensitivity of the surface solution to (a) the error in the specified location of the embedded 

thermocouple and to (b) the error in thermocouple data, the difference in error in the estimated temperature and heat 

flux is proportional to the prescribed baseline error, which was to be expected. The results also demontrate that when 

assessing the error in the specified location of the embedded thermocouple, the heat flux error bounds remain constant 

with time whereas the temperature error bounds decrease with time and when assessing the error in thermocouple 

data, the temperature error bounds remain constant with time, whereas the heat flux error increases with time. This 

disparity between sensitivity assessments is also to be expected.  

When perturbing the embedded depth, the thermocouple temperature remains unchanged from the baseline 

problem. In this case, the estimated surface temperature and heat flux are merely offset by a factor of the perturbation 

and no additional heat is added to, or removed from, the system. Hence, the results of depth perturbation follows 

closely to the baseline results of temperature [error decreases with time as indicated in Figure 5(a) and Figure 6(a)] 

and heat flux [error remains constant with time as indicated in Figure 5(b) and Figure 6(b)]. On the other hand, when 

perturbing the thermocouple data, additional heat is added to (+𝛿) or removed from (−𝛿) the baseline problem. With 

the addition (removal) of heat, the surface estimations for both temperature and heat flux will increase (decrease) with 

time as compared to the baseline problem. Hence, rather than the error in temperature decreasing with time as is the 

case for the baseline problem, the additional heat added/removed from the system causes the error to remain constant. 

Similarly, rather than the error in heat flux remaining constant with time as is the case for the baseline problem, the 

additional heat added/removed from the system causes the error to increase. This result demonstrates that any error in 

embedded depth will translate to a proportional error of the same order of magnitude, and any error in thermocouple 

data will translate to a proportional error of a higher order of magnitude. Therefore, when a user instruments a material 

with two thermocouples and post-processes the measured data to estimate the surface temperature and heat flux, it is 

of utmost importance that the measured depths and temperature data are accurate. 
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